首页> 外文OA文献 >Numerical study of the effects of pressure on soot formation in laminar coflow n-heptane/air diffusion flames between 1 to 10 atm
【2h】

Numerical study of the effects of pressure on soot formation in laminar coflow n-heptane/air diffusion flames between 1 to 10 atm

机译:压力对层流同流正庚烷/空气扩散火焰在1至10 atm之间的烟尘形成影响的数值研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Laminar nitrogen-diluted n-heptane diffusion flames burning in coflow air were numerically simulated at pressures from 1 to 10 atm. Numerical simulations were performed by using a detailed reaction mechanism containing 175 species and 1086 reactions with PAH formation up to pyrene and a sectional soot model. The soot model consists of inception as a result of the collision of two pyrene molecules, heterogeneous surface growth and oxidation following the hydrogen abstraction acetylene addition (HACA) mechanism, and soot particle coagulation and PAH surface condensation. Comparisons with available experimental data indicate that the numerical model reproduces successfully the influence of pressure on the flame structure and soot production. All the soot formation processes are enhanced with increasing pressure and HACA dominates the soot mass growth over the pressure range considered. PAH condensation is the most sensitive process to pressure whereas the inception and HACA processes exhibit similar pressure dependency. These trends are directly related to the pressure dependence of the molar concentrations of the species involved in soot formation. The increase in the molar concentrations of benzene and pyrene with pressure results from both physical and chemical effects. Propargyl recombination and interconversion of phenyl to benzene dominate the formation of benzene low in the flame over the pressure range considered, though the contributions of the addition of acetylene to n-butadienyl radical increases significantly with pressure in the flame centerline region.
机译:在同流空气中燃烧的层状氮气稀释的正庚烷扩散火焰在1至10 atm的压力下进行了数值模拟。通过使用详细的反应机理进行数值模拟,该机理包含175种和1086个反应,其中PAH生成直至pyr和截面烟灰模型。烟灰模型由两个pyr分子碰撞,异质表面生长和氢提取乙炔加成(HACA)机理后的氧化,烟灰颗粒凝结和PAH表面凝结所致。与现有实验数据的比较表明,该数值模型成功地再现了压力对火焰结构和烟灰产生的影响。随着压力的增加,所有烟灰的形成过程都会增强,并且在所考虑的压力范围内,HACA主导着烟灰质量的增长。 PAH冷凝是对压力最敏感的过程,而初始过程和HACA过程表现出相似的压力依赖性。这些趋势与烟灰形成中所涉及的物质的摩尔浓度的压力依赖性直接相关。苯和pyr的摩尔浓度随压力的增加是物理和化学作用共同作用的结果。尽管考虑到火焰中心线区域的压力,在正丁二烯基上添加乙炔的贡献显着增加,但在所考虑的压力范围内,炔丙基的重组和苯基向苯的相互转化支配了低火焰中苯的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号